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Abstract: The paper is devoted to the analysis of queueing systems in the context of the network and communica-
tions theory. We investigate the estimation in a multi-server multi-core open queueing networks and its applications
to the theorems in heavy traffic conditions (fluid approximation, functional limit theorem, and law of the iterated
logarithm) for a queue of jobs in a multi-server multi-core open queueing networks..
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1 Statement of the problem

The paper is devoted to the analysis of queueing sys-
tems in the context of the network and communica-
tions theory. We investigate the estimation in a multi-
server multi-core open queueing networks and its ap-
plications to the theorems in heavy traffic conditions
(fluid approximation, functional limit theorem, and
law of the iterated logarithm) for a queue of jobs in
a multi-server multi-core open queueing networks.

Now we shall survey the papers on a queue
in heavy traffic conditions. In the paper of Chen,
Xinyang and Yao [3], a semi-martingale reflecting the
Brownian motion approximation is developed for the
performance processes such as workload, queue, and
sojourn time. In the paper of Massey and Srinivasan
[7], the steady-state distribution of the queue process,
using a tensor and Kronecker products, shows that it
is of the matrix-geometric structure. J. Dai and W.
Dai in [4] have proved that an appropriately normal-
ized queue process converges in distribution to a d-
dimensional mapping reflecting the Brownian motion
under the heavy traffic conditions. Puhalskii [9] es-
tablished moderate-deviation principles for the queue,
virtual waiting time and sojourn processes. In [5],
Yamada has showed that the normalized queue pro-
cesses at the nodes converge in distribution to a re-
flected, multivariate diffusion process whose drift and
diffusion coefficients are state dependent and nonsin-
gular. In the article of Kushner and Martins [6], the
authors study the problems of the pathwise average
cost per unit time for controlled and uncontrolled open
queueing networks in heavy traffic. In the paper of

Zhang Hanqin and Xu Guang-hui [13] strong approx-
imations for an open queueing network in heavy traf-
fic are proved. Peterson [8] has proved that, under
heavy traffic conditions, the vector processes of total
unfinished workloads converge to a multidimensional
regulated Brownian motion. In the article of Reiman
and Simon [11], the authors consider an open queue-
ing network with multiple classes, priorities, ”arbi-
trary” routing, and general service time distribution.
Using a heavy traffic limit theorem for open queue-
ing networks, Reiman [10] found the correct diffusion
approximation for sojourn times in Jackson networks
with a single-server station. As one can see, there
are only several works designed to explore a queue
in a more complicated than the classical single-server
queue: tandem, multiphase queue, open queueing net-
work (see the articles of Boxma [1, 2], Zhang Hanqin
and Xu Guang-hui [13], Massey and Srinivasan [7],
and Sakalauskas and Minkevičius [12]).

In this paper, we investigate a multi-server multi-
core open queueing networks model in heavy traffic.

2 The network model

Let us consider a network of j stations, indexed by
j = 1, 2, . . . J and the station j with cj servers, where
the server l has m core elements l = 1, 2, . . . cj , m =
1, 2, . . . cjl. Next, {vjlm, l ≥ 1}, j = 1, 2, . . . J, l =
1, 2, . . . cj , m = 1, 2, . . . cjl are sequences of service
times, where vjlm(l) ≥ 0 is the service time for the
lth job served in an m core element of the lth server
of the node j of the multi-server multi-core open
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queueing network. Denote vjlm(0) = 0, vjlm(n) =
n∑
l=1

vjlm(l), n ≥ 1 and xjlm(t) = sup{n ≥ 0 :

vjlm(n) ≤ t}, where xjlm = {xjlm(t), t ≥ 0}
is called a service process of the m core element of
the lth server of the node j of the multi-server multi-
core open queueing network, i.e. xjlm(t) counts the
number of services completed during the server’s busy
time. We define µjlm = (E[vjlm(l)])−1 > 0, σ2jlm =

D(vjlm(l)) > 0, j = 1, 2, . . . J,
l = 1, 2, . . . cj , m = 1, 2, . . . cjl and λj =
(E[uj(l)])

−1 > 0, aj = D(uj(l)) > 0, j =
1, 2, . . . J with all of these terms assumed finite. In
addition, let τ̃(t) be the total number of jobs, routed
to the jth station of the network in the interval [0, t],
τj(t) be the total number of jobs after service depar-
ture from the jth station of the network in the in-
terval [0, t], and τ̃jlm(t) be the total number of jobs
routed to the m core element of the lth server of the
node j of the network in the interval [0, t]. Next, let
τjlm(t) be the total number of customers after service
departure from the m core element of the lth server
of the node j of the network in the interval [0, t], and
τijlm(t) be the total number of jobs after service de-
parture from the node i of the network and routed to
the m core element of the lth server of the node j of
the network in the interval [0, t]. In addition, let pij
be a probability of the job after service at the ith sta-
tion of the network, routed to the jth station of the
network. Denote ptijlm =

τijlm(t)
τjlm(t) as a part of the to-

tal number of jobs which after service at the node i
of the network are routed to the m core element of
the lth server of the node j of the network in the in-
terval [0, t], j = 1, 2, . . . J, l = 1, 2, . . . cj , m =
1, 2, . . . cjl and t ≥ 0. Now we introduce the fol-
lowing process Qjlm = {Qjlm(t), t ≥ 0}, where
Qjlm(t) indicates the number of jobs waiting to be
served by the m core element of the lth server of
the j node of the network in the interval [0, t], j =
1, 2, . . . J, l = 1, 2, . . . cj , m = 1, 2, . . . cjl and
t ≥ 0. Assum, the arrival streams of jobs in the m
core element of the lth server of the j node of the
network be equal to Aj(t)

cj ·cjl , j = 1, 2, . . . J, l =

1, 2, . . . cj , m = 1, 2, . . . cjl and t ≥ 0.

3 Estimation of the queue length of
jobs in a multi-server multi-core
open queueing networks

Let us denote
wjlm(t) = (xjlm(t)− τjlm(t)), w̄jlm(t) =

J∑
i=1

xjlm(t) · |pij − ptijlm|, x̂jlm(t) =
Aj(t)
cj ·cjl − xjlm(t)

· pj , pj = 1−
J∑
i=1

pij , p
t
ijlm = 1−

J∑
i=1

ptijlm, β̂jlm =

λj
cj ·cjl − µjlm · pj , σ̂

2
jlm =

λ3j
σ2
j ·σ2

jl
+ µ2jlm · σjlm · p2ij >

0, p̂ij = 1
ci
· 1
cjl
· pij , i, j = 1, 2, . . . J, l =

1, 2, . . . cj , m = 1, 2, . . . cjl and t > 0.

We assume that the following conditions are ful-
filled:

λj
cj · cjl

> µjlm · pj , (1)

i, j = 1, 2, . . . J, l = 1, 2, . . . cj , m = 1, 2, . . . cjl.
At first, we present the main estimation for the queue
length of jobs in a multi-server multi-core open queue-
ing network.

Lemma 3.1. If Qjlm(0) = 0, for j = 1, 2, · · · , J,
l = 1, 2, · · · , cj , m = 1, 2, · · · , cjl and t > 0, then

|Qjlm(t)− x̂jlm(t)| ≤ wjlm(t) + w̄jlm(t).

Proof. By definition of the queue of jobs we obtained

Qjlm(t) = τ̃jlm(t)− τjlm(t) =
J∑
i=1

τijlm(t)

+
Aj(t)

cj · cjl
− τjlm(t) =

J∑
i=1

τijlm(t) ·
τijlm(t)

τjlm(t)

− τjlm(t) +
Aj(t)

cj · cjl
=

J∑
i=1

τjlm(t) · ptijlm

+
Aj(t)

cj · cjl
=

Aj(t)

cj · cjl
− τjlm · (1−

J∑
i=1

ptijlm)

=
Aj(t)

cj · cjl
− τjlm(t) · ptjlm.

(2)

Hence it follows that

Qjlm(t) =
Aj(t)

cj · cjl
− τjlm(t) · ptjlm, (3)

j = 1, 2, · · · , J, l = 1, 2, · · · , cj , m = 1, 2, · · · , cjl
and t > 0.
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Besides, note that (see (3))

Qjlm(t) =
Aj(t)

cj · cjl
− xjlm(t) · ptjlm

+ (xjlm(t)− τjlm(t)) · ptjlm ≤
Aj(t)

cj · cjl
− xjlm(t) · ptjlm + xjlm(t)− τjlm(t)) · ptjlm

=
Aj(t)

cj · cjl
− xjlm(t) · ptjlm + wjlm(t)

=
Aj(t)

cj · cjl
− xjlm(t) · pj + xjlm(t)

· (pj − ptjlm) + wjlm(t) ≤ x̂jlm(t) + wjlm(t)

+
J∑
i=1

xjlm(t) · |pj − ptijlm| = x̂jlm(t)

+ wjlm(t) + w̄jlm(t), j = 1, 2, · · · , J,

(4)

l = 1, 2, · · · , cj , m = 1, 2, · · · , cjl and t > 0.
So, we obtain

Qjlm(t) ≤ x̂jlm(t) + wjlm(t) + w̄jlm(t), (5)

j = 1, 2, · · · , J, l = 1, 2, · · · , cj , m = 1, 2, · · · , cjl
and t > 0.

Applying (3) we get that

Qjlm(t) ≥ Aj(t)

cj · cjl
− xjlm(t) · ptjlm =

Aj(t)

cj · cjl
− xjlm(t) · pj + xjlm(t) · (pj − ptjlm)

≥ x̂jlm(t)− xjlm(t) · |pj − ptjlm|

≥ x̂jlm(t)−
J∑
i=1

xjlm(t) · |pj − ptjlm|

= x̂jlm(t)− w̄jlm(t) ≥ x̂jlm(t)− wjlm(t)

− w̄jlm(t), j = 1, 2, · · · , J, l = 1, 2, · · · , cj ,

(6)

m = 1, 2, · · · , cjl and t > 0.
From (6) it follows that

Qjlm(t) ≥ x̂jlm(t)− wjlm(t)− w̄jlm(t), (7)

j = 1, 2, · · · , J, l = 1, 2, · · · , cj , m = 1, 2, · · · , cjl
and t > 0.

By combining (5) and (7 ) we can write

|Qjlm(t)− x̂jlm(t)| ≤ wjlm(t) + w̄jlm(t), (8)

j = 1, 2, · · · , J, l = 1, 2, · · · , cj , m = 1, 2, · · · , cjl
and t > 0.

The proof of the lemma is complete.

4 On applications of the main results

At first we present a Fluid Limit Theorem for the
queue length of jobs in nodes of a multi-server multi-
core open queueing network under overload heavy
traffic conditions.

Theorem 4.1. If conditions (1) are satisfied, then(Q1lm(t)

t
,
Q2lm(t)

t
, . . . ,

Qjlm(t)

t

)
t→∞⇒ (β1lm, β2lm, · · · , βjlm) ,

j = 1, 2, . . . J, l = 1, 2, . . . cj , m = 1, 2, . . . cjl.

Next, we present a Functional Limit Theorem for
the queue length of jobs in a multi-server multi-core
open queueing network under overload heavy traffic
conditions.

Theorem 4.2. If conditions (1) are satisfied, then(Q1lm(t)− β1lm · n · t
σ1lm ·

√
n

;
Q2lm(t)− β2lm · n · t

σ2lm ·
√
n

;

. . . ;
Qjlm(t)− βjlm · n · t

σjlm ·
√
n

)
n→∞⇒

(z1lm(t); z2lm(t); · · · ; zjlm(t)) , where

zjlm(t), j = 1, 2, . . . J, l = 1, 2, . . . cj , m =
1, 2, . . . cjl, 0 ≤ t ≤ 1 are independent standard
Wienwer processes.

Finally, we present a Law of the Iterated Log-
arithm for the queue length of jobs in multi-server
multi-core open queueing networks.

Theorem 4.3. If conditions (1) are fulfilled, then

P

(
lim
t→∞

Qjlm(nt)− β̂jlm · t
σ̂jlm · a(t)

= 1

)

= P

(
lim
t→∞

Qjlm(nt)− β̂jlm · t
σ̂jlm · a(t)

= −1

)
= 1,

j = 1, 2, · · · , J, l = 1, 2, · · · , cj , m = 1, 2, · · · , cjl,

t > 0, a(t) =
√

2tlnlnt.

Proof. The proof of Theorem 4.1, Theorem 4.2 and
Theorem 4.3 is connected with the proof of Lemma
3.1, and we omit it.
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